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INTRODUCTION

Nonconformal contact machine elements in power train systems such as

gears, rolllng element bearings, and cam and follower mechanisms are subject

to transient lubrication. The transient characteristics are due to the time

variat|on of loading, geometry, and the ro111ng or sliding speed in the line

or polnt contact. These variations result in a squeeze effect which affects

the minimum film thickness distribution. An example of this is the ball

bearlngs in a rotordynamIc system In which there exlst cyclic variations of

the dynamic load. Recently, the transient hydrodynamic and elastohydrodynamIc

line contact problem has received much attention (Refs. I to 3). Among the

several authors, VIchard (Ref. l) pioneered the basic transient

characterlstlcs of the llne contact problem analytically and experimentally

including the viscous damping phenomenon. In this paper, the transient

solution of the hydrodynamically lubricated point contact presented.

In soIvlng the point contact transient problem numerlcally, a fast

computer code is needed to solve the two dimensional Reynolds equation for

many tlme steps. Numerical methods for solving the simultaneous equations

resulting from the dlscretization of the Reynolds equation are usually

performed using either Iteratlve methods or semidirect methods (Ref. 4). The

former commonly involves the Gauss-Seldel method, the latter comblnes the

Newton-Raphson method with a direct Inversion of the Jacoblan matrix. An

important difference between the Iteratlve method and the semldlrect method is

that the initial guess plays an Important role in the latter, whereas the

former is relatively insensitive to the initial guess. With the semidlrect

method, the use of a previous solution as an initial guess accelerates the

solution process, but a good Initial guess usually does not help the Iteratlve

method slgnlficantly (Ref. 4). The semidlrect method is preferred for

transient problem slnce the solution of the previous time step accelerates the
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ABSTRACT

The transient analysis of hydrodynamic lubrication of a polnt-contact Is

presented. A body-fltted coordinate system is introduced to transform the

physical domain to a rectangular computational domain, enabling the use of the

Newton-Raphson method for determining pressures and locating the cavitation

boundary, where the Reynolds boundary condition Is specified. In order to

obtain the transient soIutlon, an explicit Euler method is used to effect a

time march. The transient dynamic load Is a slnusoldal function of time with

frequency, fractional loading, and mean load as parameters.

Results Include the variation of the minimum film thickness and phase-lag

with tlme as functions of excitation frequency. The results are compared with

the analytic solution to the translent step bearing problem wlth the same

dynamic loading function. The similarities of the results suggest an

approximate model of the point contact minimum film thickness solution.

*NASA Resident Research Associate at Lewis Research Center.



next step solution. Furthermore, the Newton-Raphsonmethod has a quadratic

convergence rate, so, in general, the solution can be terminated within ten

iterations. Whena parallel processing computer using vectorization is

employed the matrix inversion is very fast. In addition, there Is no need to

use underrelaxatlon factors, and the solution can be obtalned more rlgorously

than is typical with Iteratlve methods. The matrix inversion can be done by

the Thomasalgorithm, and there Is no need to store the whole Jacoblan matrix.

Whenthe semidlrect method is used In the point contact problem, the

cavitation boundary, where the Reynolds boundary condition (B.C.) is specified,

Is difficult to locate. There Is a fundamental difference between the llne

contact and the point contact problem. In the llne contact case, the Reynolds

equation is integrated once; the Neumanncondition is Introduced; and the

integration constant is found as a part of the solution. In the

two-dlmenslona] problem, the Reynolds equation can not be integrated. Slnce

the Reynolds B.C. Insures massconservation across the boundary, the

cavitation boundary should be located as accurately as possible. However, the

location Is not knownIn advance; it is a part of the solution. It is a free

boundary where two B.C.'s are present: Dlrichlet B.C. (pressure is zero), and

NeumannB.C. (normal pressure gradient is zero). The relaxation method of

Christopherson (Ref. 5), derived for the hydrodynamic lubrication of a Journal

bearing, has been used to solve this kind of free boundary value problem.

This method truncates negative computedpressures whenever they occur during

Iteration. However, thls method can not be used in the semldlrect method. In

this work a body-fltted coordinate system is Introduced which transforms the

unknownboundary Into a fixed boundary and the unknownboundary functlon is

introduced into the equations of motion. The smooth cavitation boundary Is

found up to truncatlon and machlne errors, whereas the result for

Chr|stopherson's method Is dependent upon the meshslze near the boundary. To
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detect the minute change of the cavitation boundary between the adjacent tlme

steps, the current method is deslrable. Another advantage of this method Is

that a nonzero pressure gradient condition can be implemented for very lightly

loaded cases where surface tenslon may play an important role, or for

non-Newtonlan, viscoelastic fluids.

In the present paper the transient hydrodynamic lubrication of a step

bearing Is solved analytically to provide physlcal insight into the transient

characteristics of hydrodynamic lubrication. Next, the point contact problem

Is solved numerlcally by the Newton-Raphson method wlth Thomas algorithm.

Thls method is fast and does not require vast computer storage. Parallel

processing by vectorlzatlon is also utillzed.

The variation with time over a 1oadlng cycle of the minimum film

thickness, squeeze velocity, and the cavitation boundary Is studied for a wide

range of excitation frequencies.

NOMENCLATURE

F dimensionless load

F0 dlmenslonless mean load

F right hand side equation of dlscretlzed equation

f load, N (point contact), Nlm (step bearing)

fo mean load, N (polnt contact), N/m (step bearing)

G dlmenslonless cavitation boundary function

G' first derlvatlve of G wlth respect to Y

G" second derivative of G with respect to Y

g cavitation boundary curve function

H dimensionless film thickness

H0 dimensionless minimum film thickness

R0 normalized dimensionless minimum film thickness, Ho/Hom
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HOm

h

ho

k

L

NI

NJ

n

P

P

R

R

t

U

Um

uo

X

XA

X

XA

Y

YB

Y

YB

c_

o_

dimensionless mlnlmum film thickness for F0

film thickness, m

mlnlmum film thickness, m

number of iteration of Newton-Raphson method

length of the step bearing, m

reference length for order-of-magnltude analysis, m

number of grld in { direction

number of grld in n direction

normal direction vector

dimensionless pressure

pressure, N/m 2

radius of sphere, m

residual vector of dlscretlzed equatlon

time, sec

solution vector of the d|scretlzed equat|ons

average surface velocity in x-dlrectlon, m/sec

reference velocity for order-of-magnltude-analysls, m/sec

dimensionless coordinate along ro111ng direction

dlmenslonless inlet boundary 1ocatlon In X-dlrection

coordinate along rolllng direction

inlet boundary 1ocatlon In x-dlrectlon

dimensionless coordinate transverse to rolling direction

dimensionless Inlet boundary location In Y-dlrection

coordlnate transverse to rolling direction

Inlet boundary location in y-dlrectlon

vlscoslty-pressure coefficient, m2/N

dimensionless vlscoslty-pressure coefflclent



Y

6

_Om

P

PO

v

p

_s

Cp

Fractlonal loading amplltude For slnusoldal loading

dlmenslonless Frequency

dimensionless fllm thickness of the step bearlng

normalized Film thickness of step bearing, 6/60m

dimenslonless film thickness of the step bearing For mean load

lubrlcant viscosity, Pa.sec

dlmenslonless lubricant viscoslty

lubricant viscosity at atmospheric pressure, Pa.sec

kinematic viscosity, m2/sec

coordlnates of transformed domain

lubricant density, kg/m 3

dlmenslonless tlme

phase angle of the step bearing solutlon, deg

phase angle of the point contact solutlon, deg

physlcal domain

computatlonal domain

frequency of slnusoldal 1oadlng, (cycle)/sec

ANALYTICAL SOLUTION OF A STEP BEARING

Consider the slmple step bearing shown in Flg. I. Note that the step

bearing used here is subjected to an osclllatlng normal motion and Is closed

at the exlt end. To the authors' knowledge, this particular solutlon Is not

available in the llterature and Is therefore presented here. The fllm proflle

and the dynamic force are:

h(x,t) = h(t), O<X<L,

= O, x = L,

f(t) = fo(l + 8 sln et).

(1)

(2)



For an incompressible, Isovlscous, Newtonlan fluid, the governing

equatlon Is,

a {h3 8_xx_ 1 ah ah Ula_ = 21_oUm B-x + 121Jo aT ; Um- 2"

The boundary conditions and the initial condition are,

p=O

h=O

h = hi

With the followlng deflnltlons,

6 _; tUm" x.= _ = L ' X = [,

the dlmenslonless equations are,

at x = O,

at x = L,

when t = O.

p pL F f . _L

POUm PoUm um

63 @P = 12 _-_--+12 _-_,

6(X,_) = 6(_), 0 < X <I,

= O, X = l,

P = O at X = O,

6 = 61 when • = O,

F(_) = Fo(l + B sln y_).

After Integratlng Eq. (5) three times using,

l

f = F(_)P dX

O

the followlng nonlinear first order differential equation results:

2 86 3 I

63 8_- _= _F(_).

The solution of Eq. (8) subject to the B.C.'s In Eq. (5) Is,

6(_) III_12 FO FoI_Y 1 FO FOB" - 6" + 2(y 2 + 9) e-3_ --- (3m_ + 6- + 2(y 2 + 9)

(3)

(4)

(5)

(6)

(7)

(8)

sln y_ - y cos y_)]-

112

(9)

After a sufficiently long tlme (_ * _), the exponential term vanishes to zero,

and the tlme variation of the film thickness becomes,



where

112

The formula for the squeeze velocity Is obtalned by differentiating

Eq. (lO),

(I0)

-312

cos(y_ - Cs)[l _/ 13 sin(y_ - @s) ] (11)(_)2 "'2+ t+(_)

ANALYTICAL FORMULATION OF THE POINT CONTACT PROBLEM

The physlcal model Is 111ustrated In Fig. 2. The radius of the sphere Is

R and the dynamic force Is the same as that of the step bearing. The two

dimensional, transient, Incompresslble form of the Reynolds equation for

k + - 12um _ 12 u+ at '

Newtonlan flow Is,

p = p(x,y,t) (12)

h : h(x,y,t)

p - p(x,y,t).

The parabolic approximation of the f11m thickness equatlon of the sphere

where

Is:

I y2h : h0 + _-_ (x2+ ). (13)

At a given tlme, the generated pressure d|strlbutlon Is balanced by the

dynamic load,

f(t) " I I P(x,y,t)dx dy.
(14)
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The plezovlscous effect Is modelled by the Barus relatlon (16)"

p : _0 e_p.

The boundary condltlons are"

p=O

p = 0 at

at x = xA 0 _<y _<YB'

xA _< x _< g(yB,t) Y = YB'

p : O; _- 0 at x : g(y,t) 0 < y < YB'

8p 0 at XA < x < g(O,t) y = 0By " - - •

At the cavltation boundary, x : g(y,t), the pressure and the normal

pressure gradlent are zero (Reynolds B.C.). Using symmetry at y = O, the

Neumann B.C. Is imposed and only half of the domaln Is modelled.

With the following deflnltlons,

_" _" H : _; p : pR . F
X - R' Y = R' _OPm' :

Um__tt• _R., _ : P---•, G : g
: R ' Y : um NO R•

the dlmenslonless equations are:

f

NoUm R'

8_X HI__@P 1 @_y HI__BP 1 @H @H

H - H0 + 2I-(X2 + y2),

F(_) : 2
Ii B IG(Y)

XA

P(X,Y,_)dX dY,

w|th

F(=) = FO(I + B sln y _),

: e_P

- 1.5131XI0 -8 In this study•

(15)

(16)

(17)
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To flx the unknown cavltatlon boundary, the following body-fltted

coordlnate transformation shown In Fig. 3 Is Introduced:

YB(X - XA)

" G(Y,_) - XA'

= Y_ (18)

131= (G(Y,_) - XA)IY B.

IJI Is the Jacoblan of the coordinate transformation which shows that as

long as G(Y,_) Is not equal to XA, there exists a conformal mapping between

the physical domaln and the computatlonal domaln.

The dlfferentlatlons transforms to the followlng:

a YB a

aX G - XA a_'

a a a
aY - an - G - XA a_'

a2 Y_ a2

ax2 - (G - XA)2 a_2'

a2 {2(G,)2 a2 _ a2 a2

BY2 (G - XA)2 a_2 G - XA a-_ an2

{[2(G')2 _ G,,(G_XA)] a

(G - XA)2 a_

(19)

The Reynolds equatlon In the (_,n) system Is,

where

APsE + BP{n + CP + DP{ + EP
+F=O, (20)

B : A3[-2_G'(G-XA)],

C = A3(G - XA)2,

D : AIYB(G- XA) - A2{G'(G- XA) + A3{[2(G')2 - G"(G- XA) ],

10



2
E = A2(G - XA) ,

2
F = -A4(G - XA) ,

Al
ax+

A2 3H2_ @H H3 _7 I_)- BY + _. '

H3

A3-_ ,

8H @H
An = 12 _-_ + 12

In the above formulation, AI, A2, A3, and A4 can be transformed to the

({,n) coordinate system using Eq. (19). At the cavltatlon boundary,

Since

I 2,ap laP = I I (YB + _(G') - G'aP

a_ I/1÷(G'>2 _-XA _ _j :0.

@P/an = 0 at _ = YB'

(21)

aP

a_ - O, P = 0 at _ = YB" (22)

At n = O(Y = 0), the symmetry condltlon Is,

8P 8P ___' BP
- O. (23)

8Y - an G - XA 8_ -

that,

But, G' : 0 due to the symmetry of cavitation boundary and It follows

BP

8q 0 at n = O. (24)

The transformed film thickness equation and the force balance equation

are expressed,

II



1
H(_,n) = H0 +

G - XA)

(G-X A)

YB

2
+ rl , (25)

d_ dn. (26)

In the above formulation, the unknown boundary curve function G Is

introduced Into the governlng equatlons while the computational domain Is

fixed.

NUMERICAL METHODS

Equation (20) Is a non]inear partial differential equation. The

non]inearity Is due to the plezovlscous relation and to the function G In

the transformed Reynolds equation.

Spatial Discret|zatlon

In order to minimize the number of grid points while malntainlng accuracy,

a smoothly varylng nonuniform spaclng is generated by a two-slded stretching

functlon, (hyperbollc tangent) (Ref. I0). The finest spacing Is near the

cavltatlon boundary which Is also near the maximum pressure gradient,

Figure 4 shows the f|nlte difference mesh structure. The Increments In

and n and are such that

_I+I - _I = r_A_

no - nj_ l = An

nj+l - nO : rn_q.

By the Taylor series expansion, the finite difference approximations of

derivatives wlth respect to { and n are,

(27)
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BP

.2o _ + (r2 - I)PT j + PI+I,J
_,Erl_l,j • .._ v ,

2p _ + (r2 - I)P T j + PI,J+l

Bn n n

r P l 3 - (r + l)Pi_
B2p = 2 _ "2

r_(1 + r_)a_

. _ _ - (r + l)PI j + PI J+l

82P 2
= (I + r )An2

an2 rn n

_ r2(r 2 l)Pi_l,3 + (r_ - l)

-I ,3-I 1

' (28)

Substltut_ng Eq. (28) into the transformed Reynolds Eq. (20) the following

dlscretlzed equations results,

RI, J = CiPl_l,3+1 + C2PI,J+I + C3PI+I'J+I + C4PI-I ,J + C5PI'J + C6PI+I 'j

+ CBPI + + = O, (29)+ CTi_l ,J-I ,3-I C9PI+I ,J-I CI0

with = p = 0 I < J < NJ,
PI,J NI,J - -

=0
PI ,NJ

PI,O = PI,2

PNI+I ,J = PNI-I ,3

I < I <_.NI,

I<I<NI,
w

1 <J_<N3.
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Steady-State Solutlon Method

The transient solutlon Is formed by computing the steady-state solutlon

for each tlme step Includlng the squeeze term. The numerical technique for

the steady-state solution along with the Thomasalgorithm and Newton-Raphson

method Is described first.

The dlscretlzed form of transformed equation Is,

._ ->
K(u)u = _ (30)

The vector u represents the unknown values, pressures and cavitatlon

boundary. For an Isovlscous condition K(_), contains the function G, and,

for a p|ezovlscous condition, it Includes pressures as well. The dlscretlzed

simultaneous equations are nonlinear. Even for the linear free boundary value

problem, It has a nonlinear characteristics since the unknown boundary is

associated wlth the solution.

The Newton-Raphson method is described,

- k) (31)Uk+ l = uk

_(_k ) _: K(Uk)U k - _ Is the residual vector and J(_) Is the Jacoblanwhere

of the system of equatlons. In practice, the Iteration Is organized as,

J(Uk)AU k : - (_k), Uk+ l : uk + a_ k. (32)

For thls study, the vector u

= P3,3' ,J'"

in which PI,j and PNI,J

The residual vector R Is,

(R 2 R3R = ,j, ,j,.

IS,

., PNI_I,j,Gj) T, 3 - I,NJ - l

are zero from the Dlrichlet boundary condltlon.

T•, RNI_I, J RNI,J ,
O:l, NJ-I

(33)

(34)
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The Oacobian matrix is a block tridlagonal matrix in Fig. 5, and each

block Is a one-slded arrow-shaped matrix, Fig. 6. In the formulation of each

block matrix of the Oacobian, the last columns are the differentiations of the

residual vector with respect to the cavitation boundary function, G. Since all

the coefficients in the dlscretlzed Reynolds equation are composed of G0, G'O,

and G" o, it is easier to calculate them numerically (Ref. 11) using:

8RI'j I-- [ ]8Gj : _g RI,j(Gj + Cg'WI,j) - RI,j(Gj'wI,j) (35)

where wI,j contains all other variables except Gj. The value of

mg can be chosen to be sufficiently small not only to maintain good accuracy

of Eq. (35) but to prevent serious round-off errors. In thls calculation,

mg Is set to lO -9 In double precision.

The block trldlagonal system of Eq. (30) Is solved by the Thomas

algorithm (Ref. 12). Thls algorithm inverts the whole matrix at a time by

matrix multipllcation and inversion of the block matrix, which is quite fast

on a parallel processing computer with small memory storage size equal to

2 x NIx NJ x NJ. The matrix inversion Is accomplished uslng LINPACK.

The Newton-Raphson method requires a good initial guess of the solutlon.

For this purpose, the Gauss-Seidel iteration method Is used to get an

approximate pressure dlstributlon and cavitation boundary location. Once one

solution Is obtained by the Newton-Raphson method, it is used for the guess to

next solution. The convergence criteria are

(I) pressure

I J l'Jl
< l.OxlO -4

15



(2) cavitation boundary

J

(3) force balance

< l.OxlO-4

IF input - Foutputl
< l.OxlO -4

F1nput

In order to make sure of the convergence, the L2-norm of the residual

vector Is monltored. In general, the solution converges within 3 to 8

iterations. In this study, NI - 41, NJ = 31.

Transient Solution Method

For the steady-state solutlon, the problem Is to find H0 for a given

load, or for a hydrodynamic case, the load capacity can be calculated for a

given HO. But, for the transient case, there is an additional unknown value

to be determined, the squeeze velocity. The basic solution technique Is to

use a "tlme-march." That is, H0 Is fixed from the previous time step, and

the squeeze velocity Is found that balances the generated pressure distribution

with the dynamic force at that time. The detailed computation procedure is

provided In Fig. 7. At the first tlme step, the steady-state Reynolds

equation is solved to find HOm, and, fixing HO, the transient Reynolds

equation Is solved including the squeeze term to find the squeeze velocity

using the force balance equation. For thls purpose, a bisection method Is

used, with an approximate range of squeeze velocltles according to the history

of dynamic force and the minimum film thickness variation. Once a converged

solution is obtained, the minimum film thickness of the next time step |s

estimated from the fo]lowlng expression:

16



Hn+1 n (aH_ n
0 = HO + \B--_7 _' (n = present tlme step) (36)

The film thickness and squeeze velocities are established at successive

time steps and the calculatlon is continued beyond the first complete loading

cycle until the periodlc requirement is reached. The convergence criterion is:

I(H)IC+IO n - (Ho)_CI
< l.OxlO -4, IC = number of cycle

IC
(Ho)n

In thls calculatlon, 361 time steps with l° increment are used In one

1oadlng cycle.

RESULTS AND DISCUSSION

The analytical solution of the step bearing demonstrates that _ approaches

one with a phase-lag of 90° as y Increases (Fig. 8). This asymptotic

behavior is due to the squeeze actlon caused by the dynamic forces. Figure 9

shows the squeeze variation of Eq. (11). This phenomenon Is physically

similar to a nonllnear massless sprlng-damper system with forced vibration

shown In Fig. 10, sometimes referred as a "half a degree of freedom system."

The response of this system Is that the amplitude approaches a constant value

and the phase-lag goes to 90° . Although the transient solution of the point

contact problem can not be solved analytically and requires numerlcal

computation, it may be speculated that baslcally it also has a similar

nonllnear sprlng-damper system. In the following example, the numerical

results of the point contact problem are compared to the step bearing solution.

For this study, F0 = 3000 and B = 0.3 with different y'S. The

minimum film thickness for F0 is 1.2471xi0 -5 for the Isovlscous case and

1.3907xi0 -5 for the plezovlscous effect with XA - 0.08, YB = 0.06. Figure 11

shows the pressure dlstributlon for F0 and Fig. 12 dellneates the detailed

17



cavitation boundary curve In which the minimumvalue of G occurs at Y = 0

and It Increases up to a certain location and then decreases becauseof the

geometry of the sphere.

Figure 13 illustrates the tlme varlatlon of the normalized minimumfilm

thickness (BO) during one loading cycle with 361 time steps. The squeeze

velocity distribution is shownIn Fig. 14 for different y's. These results

are qualitatively similar to those of the step bearing solution. However, it

should be noted that the order of the nondimenslonal excitation frequencies is

different since L Is used as a reference length In the step bearing while

R is used for the point contact case.

Equation (I0) may be put in the followlng form,

1112
: 1

"I+ asB sln(y_ - Cs )"

. I
l Cs tan-1(Xs Y) Xs : 3" (37)

as _/ I + (Xsy)2

where

The variation of as and Cs are plotted in Fig. 15.

For quantitative analysls of the transient point contact problem, the

following formula Is suggested by Eq. (37),

2

HO = 1 + ap_ sln(y_ - Cp)

Equation (38) Is deduced based on the fact that HOm Is Inversely

proportional to F_ whereas _Om to 4F_. The unknown values in Eq. (38),
V

Cp, are obtained by a nonlinear least square flt wlth 361 data

Figure 16 shows the comparison between the numerical results and the

The best curve fit can be obtained by letting the numerator of

(38)

ap and

point.

curve fit.

18



Eq. (38) be variable, however, it Is near I, for example, 1.005 for y = lO0,

1.019 for y = lO00. The curve fitting results are recorded In Table I.

Fig. 17 shows the variation of ap and ¢p, qualitatlvely, similar

characteristics to the analytical step bearing solution with different order

of magnitude of y (Fig.15).

followlng relation,

The value of Xp Is obtained assuming the

@p : tan-1(Xpy) (39)

Xp Is nearly constant over a wide range of y, approximately 0.0054. If an

analytlcal solution were possible, the ap would be a function of Xp.

However, since it also would be a function of the geometry associated with the

cavitation boundary, no attempt Is made to obtain a form similar to Eq. (37).

Instead, for design purposes, Eq. (38) can be used along with Table I.

For the plezovlscous solutlon, ap is smaller than that of the Isovlscous

solution (Fig. 17), but @p'S are vlrtually the same. The ap'S

asymptotically approach those of the isovlscous case. Figure 18 shows this

more vividly. Due to the plezovlscous effect, the distribution of B0 Is

more damped with the same phase angle. The Xp'S for the plezovlscous case

are nearly constant and equal to the Isoviscous case (see Table I). This

Implies that Xp is a characteristic of the translent point contact problem

of the current model.

Figure 19 I11ustrates the location of the outlet boundary at Y - 0

normallzed by that for the steady-state solution of FO. For the steady state

case, G(O,_) approaches the point of contact as the load Increases. However,

when y is greater than zero there exists a substantial variation In G(O,_)

due to the squeeze action. When the squeeze is downward, G(O,_) may be

stretched outward and vice versa. For example, when y , 200, there Is a
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downwardaction betweena-b and c-d in Fig. 19, and upwardactlon between

b and c. These polnts correspond to those In Flg. 14.

In the foregolng analysls, the Reynolds Eq. (12) neglects the inertia

forces. But, as y increases, the valldlty of thls assumption becomes

suspect. Thls assumption Is examined by an order-of-magnltude-analysls

of the steady-state Navler-Stokes equatlon In Ref. (]2).

Reynolds number Is much less than one,

the inertia forces can be neglected. Here, u0

P. Is a reference length In the x-dlrection, and

thickness dlrectlon. Uslng,

R_
U0 - R_; y -

Um

Nhen the modified

(40)

Is a reference velocity,

h0 is that In the film

the followlng relation for the valldlty of the assumptlon that Inertla

forces are negligible Is,

For example, If

v = 10-5 m2/sec,

I ho hoUm

Y { HoRe' HO : R--' Re - v

H0 - lO-5, R , 10-2 m, u : 0.1 m/sec, and

(41)

(42)

y { lO8 (43)

Even for y - lO00, Inertla effects remain negllglble.

CONCLUSIONS

The transient solutlon of the hydrodynamlcally-lubrlcated polnt contact

problem Includlng the squeeze effect Is obtained numerically using the

bail-on-plane model. A new computatlonal algorithm Is Implemented to deal

wlth the cavltatlon boundary by the semidlrect method wlth the advantage of
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supercomputing. Thls method provides a faster and more rigorous way to solve

the nonconformal contact problem with a Newtonian fluid than the conventlonal

iteratlve method, and the flexibility to deal with more complex boundary

conditions for lightly loaded bearings and more realistic rheologlcal models.

The qualitative and quantitative analysls Is comparedwlth the analytical

solution of a dynamically loaded step bearing solutlon using a nonlinear curve

fitting method. It Is found that there exists a characteristic similarity in

the transient responses to a nonlinear massless (i.e., no inertia)

sprlng-damper system, in terms of the variation of the minimumfilm thickness

and phase angle. According to an order of magnitude analysis, it is confirmed

that the Inertla-forces are negligible for a wide range of practlcal

excitation frequencies.

These results can be applied to the design of moderately loaded ball

bearings in rotordynamlc systems and can be extended to gear deslgn adding the

tlme varlatlon of the geometry and speed. For hlghy loaded elliptical contact

case, the elastic deformations and elIiptlcity parameter need to be considered.
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TABLE l - CURVE FITTING RESULTS OF EQ. (38)

0
25

5O
lO0

150

2O0

25O

3OO

35O

4OO

5O0

75O

1000

Isovlscous Plezovlscous

y _p Cp Xp Xp

00.890

.882

.859

.781

•687
.599

.523

.461

•409

.368

•303

.210
.159

0.0

7.0
14.7

28.3

39.2

47.5
53.8

58.7
62.3

65.3

69.8

76.1

79.4

0.00491

.00523

.00538

.00544

.00545

°00546

.00547

.00545

.00544

.00544

.00539

.00536

_p Cp

.734 0.0

.728 7.0

.709 14.7

•646 28.4

.571 39.2

.499 47•4

.438 53.7

.386 58.5

.343 62.3

•309 65.2

.255 69.8

.176 76.1

.134 79.4

0.00491

.00526

.00541

.00544

.00544

.00545

.00544

.00545

.00541

•00544

.00539

•00536

f[t)=/o(I=Bsin_)t)

[
Y

L -liP.

h(x,t)

IL

U1

Figure 1. - Schematic view of _e step beadng configuration,
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f(O=fo(I+osin_t)

j BOUNDARY

Figure2.- Physicalmodel ofthe pointcontactproblem.
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P=0 YB

_ YB

= G(Y,J)

=,0 P=O

,-o

X

P_O

Q' _=o

(a) Physical domain. Co)Computational domain.

Figure 3. - Coordinate transrormal,_on of the physical domain to the
computational domain.
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Figure 4. - Finite difference mesh structure.
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Figure 5. - The Jacobtan matrix of eq. [32].

24



[Bj] =

aR 2,J

aPz.j

aR2.j

aP zJ

aR2_j

aP ?_..j

aR2,j aR2.j

aP2,j aP2,j

aRNI-I.j aRNt_I,j

aP N1-2,J aP NI- l,J

aRNI_/

_P Xl-l,J

J=l, N J-1

Figure 6. - The elements in diagonal block matrix.
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YES BISECTION METHOD
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CYCLE = 1? \NO/
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NO<F,.,SECYC.E?>
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m<PE RIOD ICITY REQUIREMENT?>
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Figure 7. - Flow digram for the transient solutTon.
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Figure 8. - Normalized film thickness versus nondimensional
time during one loading cycle for the step bearing.
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Figure 9 - Squeeze velocity divided by 80m versus
nondlmensional time during One loading cycle

for the step bearing,

J/(t)

Figure 10. - Half a degree of freedom model.
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Figure 1t. - The pressure distribution of half of the domain for the
point contact problem for Fo - 3000.
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CAViTATiON

Y

Figure 12. - The detailed pressure distribution of halt of the domain
near the cavitation boundary curve for the point contact problem.
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Figure 13. - Normalized minimum film thickness distribution for
the point contact problem.
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Figure 14. - The distribution of the squeeze velodb/divided by
the minimum film thickness for the mean load.
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Figure 15. - u sand ,_sas functions of 7, eq. [37].

27



Ho

2.0

1.5

1.0

I CURVE FIT "_

NUMERICAL

I I 1 I
91 18t 271 361

TIME STEP

Figure 16. - Comparison of the numerical results with
curve fit for "_= 100.
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Figure 17. - (_par_d $p in eq. [38] as [unction of ")'.
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Figure 18. - The Comparison of the normalized minimum
film thickness distribution between lhe isoviscous and
the plezovlscous solution,
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Figure 19. - The distribution of the normalized cavitation boundary
at Y = 0 divided by that for the mean load.
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